lunes, 8 de julio de 2019

ESTADISTICA

La estadística (la forma femenina del término alemán Statistik, derivado a su vez del italiano statista, "hombre de Estado"),1​ es la rama de las matemáticas que estudia la variabilidad, así como el proceso aleatorio que la genera siguiendo leyes de probabilidad.2​ Como parte de la matemática, la estadística es una ciencia formal deductiva, con un conocimiento propio, dinámico y en continuo desarrollo obtenido a través del método científico formal. En ocasiones, las ciencias fácticas necesitan utilizar técnicas estadísticas durante su proceso de investigación factual, con el fin de obtener nuevos conocimientos basados en la experimentación y en la observación. En estos casos, la aplicación de la estadística permite el análisis de datos provenientes de una muestra representativa, que busca explicar las correlaciones y dependencias de un fenómeno físico o natural, de ocurrencia en forma aleatoria o condicional.
La estadística es útil para una amplia variedad de ciencias fácticas, desde la física hasta las ciencias sociales, desde las ciencias de la salud hasta el control de calidad. Además, se usa en áreas de negocios o instituciones gubernamentales con el objetivo de describir el conjunto de datos obtenidos para la toma de decisiones, o bien para realizar generalizaciones sobre las características observadas.
En la actualidad, la estadística aplicada a las ciencias fácticas permite estudiar una determinada población a partir de la recopilación de información, el análisis de datos y la interpretación de resultados. Del mismo modo, también es una ciencia esencial para el estudio cuantitativo de los fenómenos de masa o colectivos.

GEOMETRÍAS NO EUCLIDIANAS

Se denomina geometría no euclidiana o no euclídea, a cualquier sistema formal de geometría cuyos postulados y proposiciones difieren en algún asunto de los establecidos por Euclides en su tratado Elementos. No existe un solo sistema de geometría no euclídea, sino muchos, aunque si se restringe la discusión a espacios homogéneos, en los que la curvatura del espacio es la misma en cada punto, en los que los puntos del espacio son indistinguibles, pueden distinguirse tres formulaciones​ de geometrías:
  • La geometría euclidiana satisface los cinco postulados de Euclides y tiene curvatura cero (es decir se supone en un espacio plano por lo que la suma de los tres ángulos interiores de un triángulo da siempre 180°.).
  • La geometría hiperbólica satisface sólo los cuatro primeros postulados de Euclides y tiene curvatura negativa (en esta geometría, por ejemplo, la suma de los tres ángulos interiores de un triángulo es inferior a 180°).
  • La geometría elíptica satisface sólo los cuatro primeros postulados de Euclides y tiene curvatura positiva (en esta geometría, por ejemplo, la suma de los tres ángulos interiores de un triángulo es mayor a 180°).
Todos estos son casos particulares de geometrías riemannianas, en los que la curvatura es constante, si se admite la posibilidad de que la curvatura intrínseca de la geometría varíe de un punto a otro se tiene un caso de geometría riemanniana general, como sucede en la teoría de la relatividad general donde la gravedad causa una curvatura no homogénea en el espacio-tiempo, siendo mayor la curvatura cerca de las concentraciones de masa, lo cual es percibido como un campo gravitatorio atractivo.

ALGEBRA MODERNA

El álgebra abstracta, ocasionalmente llamada álgebra moderna, es la parte de la matemática que estudia las estructuras algebraicas como las de grupo, anillo, cuerpo (a veces llamado campo) o espacio vectorial. Muchas de estas estructuras fueron definidas formalmente en el siglo XIX, y, de hecho, el estudio del álgebra abstracta fue motivado por la necesidad de más exactitud en las definiciones matemáticas.
En álgebra abstracta, los elementos combinados por diversas operaciones generalmente no son interpretables como números, razón por la cual el álgebra abstracta no puede ser considerada una simple extensión de la aritmética. El estudio del álgebra abstracta ha permitido observar con claridad lo intrínseco de las afirmaciones lógicas en las que se basan todas la matemática y las ciencias naturales, y se usa hoy en día prácticamente en todas las ramas de la matemática. Además, a lo largo de la historia, los algebristas descubrieron que estructuras lógicas aparentemente diferentes muy a menudo pueden caracterizarse de la misma forma con un pequeño conjunto de axiomas.
El término álgebra abstracta se usa para distinguir este campo del álgebra elemental o del álgebra de la escuela secundaria que muestra las reglas correctas para manipular fórmulas y expresiones algebraicas que conciernen a los números reales y números complejos. El álgebra abstracta fue conocida durante la primera mitad del siglo XX como álgebra moderna"

TEORIA DE NUMEROS

Contiene una cantidad considerable de problemas que podrían ser comprendidos por "no matemáticos". De forma más general, este campo estudia los problemas que surgen con el estudio de los enteros. Tal como cita Jürgen Neukirch: La teoría de números ocupa entre las disciplinas matemáticas una posición idealizada análoga a aquella que ocupan las matemáticas mismas entre las otras ciencias. El término aritmética también era utilizado para referirse a la teoría de números. Este es un término bastante antiguo, aunque ya no tan popular como en el pasado. De allí la teoría de números suele ser denominada alta aritmética, aunque el término también ha caído en desuso. Este sentido del término aritmética no debe ser confundido con la aritmética elemental, o con la rama de la lógica que estudia la aritmética de Peano como un sistema formal. Los matemáticos que estudian la teoría de números son llamados teóricos de números.
En la teoría elemental de números, se estudian los números enteros sin mplear técnicas procedentes de otros campos de las matemáticas. Pertenecen a la teoría elemental de números las cuestiones de divisibilidad, el algoritmode Euclides para calcular el máximo común divisor, la factorización de los enteros como producto de números primos, la búsqueda de los números perfectos y las congruencias. Son enunciados típicos el pequeño teorema de Fermat y el teorema de Euler que lo extiende, el teorema chino del resto y la ley de reciprocidad cuadrática. En esta rama se investigan las propiedades de las funciones multiplicativas como la función de Möbius y la función φ de Euler; así como las sucesiones de números enteros como los factoriales y los números de Fibonacci.

GEOMETRIA

La palabra GEOMETRÍA procede del griego antiguo: significa “medida de la tierra”.
Los antepasados de los geómetras actuales fueron los agrimensores del antiguo Egipto, que tenían encomendada la tarea de restablecer los límites de las propiedades, los cuales habían sido borrados por el agua debido a las inundaciones periódicas del Nilo.
Fueron arquitectos egipcios y babilonios quienes construyeron templos, tumbas y pirámides claramente geométricos, y los primeros navegantes del mediterráneo usaban técnicas geométricas básicas para orientarse. Estas civilizaciones hacían un uso práctico de los números sin tener claro el concepto de número ni de las teorías matemáticas, y usaban las propiedades prácticas de las líneas, ángulos, triángulos, círculos y otras figuras sin usar un estudio matemático detallado.
Tales de Mileto, en el siglo VI a.C., fue quien dio comienzo a la geometría griega como una disciplina matemática, la primera disciplina matemática.
El libro “Los Elementos” de Euclides, del 350 a. C. es el primer tratado escrito de Geometría. Para Euclides y para muchas generaciones de matemáticos siguientes, la Geometría era el estudio de las formas regulares que se podían observar en el mundo. Actualmente, a ese estudio se le denomina Geometría Euclídea o Geometría 

martes, 2 de julio de 2019

GEOMETRÍA DIFERENCIAL

En matemáticas, la geometría diferencial es el estudio de la geometría usando las herramientas del análisis matemático y del álgebra multilineal. Los objetos de estudio de este campo son las variedades diferenciables (al igual que en la topología diferencial) así como nociones de geometría de Riemann, por ejemplo las de conexión y curvatura (que no se estudian en la topología diferencial).
Las aplicaciones modernas de la geometría diferencial están muy relacionadas con la física, especialmente en el estudio de la Teoría de la Relatividad.

ANÁLISIS VECTORIAL

El cálculo vectorialanálisis vectorial o cálculo multivariable es un campo de las matemáticas referidas al análisis real multivariable de vectores en 2 o más dimensiones. Es un enfoque de la geometría diferencial como conjunto de fórmulas y técnicas para solucionar problemas muy útiles para la ingeniería y la física.
Consideramos los campos vectoriales, que asocian un vector a cada punto en el espacio, y campos escalares, que asocian un escalar a cada punto en el espacio. Por ejemplo, la temperatura de una piscina es un campo escalar: a cada punto asociamos un valor escalar de temperatura. El flujo del agua en la misma piscina es un campo vectorial: a cada punto asociamos un vector de velocidad.
Cuatro operaciones son importantes en el cálculo vectorial:
  • Gradiente: mide la tasa y la dirección del cambio en un campo escalar; el gradiente de un campo escalar es un campo vectorial.
  • Rotor o rotacional: mide la tendencia de un campo vectorial a rotar alrededor de un punto; el rotor de un campo vectorial es otro campo vectorial.
  • Divergencia: mide la tendencia de un campo vectorial a originarse o converger hacia ciertos puntos; la divergencia de un campo vectorial es un campo escalar.
  • Laplaciano: relaciona el "promedio" de una propiedad en un punto del espacio con otra magnitud, es un operador diferencial de segundo orden.
La mayoría de los resultados analíticos se entienden más fácilmente usando la maquinaria de la geometría diferencial, de la cual el cálculo vectorial forma un subconjunto.

ESTADISTICA

La  estadística  (la forma femenina del término  alemán   Statistik , derivado a su vez del  italiano   statista , "hombre de Estado&q...